人工智能机械臂 发表于 2025-2-7 01:27:08

深度学习入门笔记——神经网络的构建和使用

神经网络的整体构建

神经网络的基本骨架

首先可以在Pytorch官网的Python API中查看torch.nn的使用,如下所示。可以看到神经网络包括Container(基本骨架)、卷积层、池化层、Padding层、非线性激活等等。
构建一个神经网络首先要先构建起基本骨架,也就是Containers

nn.Moudle的使用

这是官网中给出的具体示例,重点在于创建我们自己的神经网络类的时候必须要继承父类nn.Moudle,然后就可以重写里面的函数等,这里的forward是前向传播函数,后面会有反向传播函数

这是一个简单的nn.Moudle使用示例,并没有涉及到神经网络的卷积层等。可以通过断点调试来查看具体的代码执行流程
from torch import nnclass CY(nn.Module):    def __init__(self):      super().__init__()    def forward(self,input):      output=input+1      return outputcy=CY()input=1output= cy(input)print(output)卷积层

构建好基本骨架之后,就需要对卷积层进行操作,可以看到官方给出的卷积层包括以下方式,其中对于图像来说常用的就是卷积2d操作

图像的卷积

首先明确一下图像卷积的概念,如下图所示,图像卷积就是用卷积核在输入图像上一步步的滑动,每个方格内的元素对应相乘后相加作为输出的对应位置的元素

官方文档中给出的示例是这样的,对于参数的解释已经很详细了
这里要注意的一个点就是 卷积层的输入和卷积核都要描述成(N,C,H,W)的tensor格式,其中N表示有多少张图片,C表示有多少个通道,H表示图片的高度,W表示图片的宽度。所以初始设置输入的时候不仅要用torch.tensor变成tensor格式,后续还需要将torch.reshape(input,)转变为conv2d的格式,因为初始格式是只有宽和高这两个参数的

这其中有几个参数可以解释一下:

[*]stride:也就是卷积核一次移动的步数
[*]padding:是否要将输入图像进行零填充,默认为0.可以看到设置填充之后,卷积得到的结果会比原来的大

具体代码如下:
import torchimport torch.nn as nnimport torch.nn.functional as Finput=torch.tensor([,# 输入图像                  ,                  ,                  ,                  ])kernel=torch.tensor([,   # 卷积核                     ,                     ])print(input.shape)input = torch.reshape(input,)kernel=torch.reshape(kernel,)output= F.conv2d(input,kernel,stride=1)print(output)output_1= F.conv2d(input,kernel,stride=2)print(output_1)output_2=F.conv2d(input,kernel,stride=1,padding=1)print(output_2)nn.conv2d的使用

官方给出的函数使用方法如下:

这里要注意的就是in_channels和out_channels的理解,可以说in_channels就是图像的通道数,也就是RGB=3,out_channels代表的是用多少个卷积核来对图像进行卷积,如果out_channels=6的时候就是用6个卷积核来对图像进行卷积,然后对得到的输出进行处理

参数的具体描述如下:

具体代码如下,要注意的是使用tensorboard对图像进行显示的时候,由于tensorboard显示的图像格式是规定的3个通道,所以上面得到的6个通道的图像是会报错的。所以我们可以用 output = torch.reshape(output, (-1, 3, 30, 30))来将图像格式进行重新设置,其中-1表示的是占位符,表示这个位置的参数交给后面的参数来计算
# -*- coding: utf-8 -*-import torchimport torchvisionfrom torch import nnfrom torch.nn import Conv2dfrom torch.utils.data import DataLoaderfrom torch.utils.tensorboard import SummaryWriterdataset = torchvision.datasets.CIFAR10("dataset/cifar-10-batches-py", train=False, transform=torchvision.transforms.ToTensor(),                                       download=True)dataloader = DataLoader(dataset, batch_size=64)class Tudui(nn.Module):    def __init__(self):      super(Tudui, self).__init__()      self.conv1 = Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=0)    def forward(self, x):      x = self.conv1(x)      return xtudui = Tudui()writer = SummaryWriter("logs")step = 0for data in dataloader:    imgs, targets = data    output = tudui(imgs)    print(imgs.shape)    print(output.shape)    # torch.Size()    writer.add_images("input", imgs, step)    # torch.Size()->     output = torch.reshape(output, (-1, 3, 30, 30))    writer.add_images("output", output, step)    step = step + 1writer.close()最后得到到图像是这样的:


可以看到输出图像一个批次中有128个图像,这也就是我们将6个通道变为8个通道导致的,和初步设想一致
池化层

这里主要讲解的是2D类型最大池化层,同样的,详细的函数信息在官网上:

主要注意的就是**ceil_mode 这个参数,这里的意思其实就是要向下取整还是向上取整,如果为True的话就是向上取整,False的话就是向下取整。也就是说,在下图这个示例中,如果取为True的时候在进行池化的时候对于多出来的部分(原图像是5×5,池化核是3×3),会进行保留并得出结果,而为False的时候就不会保留结果。

dilation这个参数其实就是池化的时候是否要跳步进行
代码如下:
import torchimport torchvisionfrom torch import nnfrom torch.nn import MaxPool2dfrom torch.utils.data import DataLoaderfrom torch.utils.tensorboard import SummaryWriterdataset = torchvision.datasets.CIFAR10("../dataset", train=False, download=True,                                       transform=torchvision.transforms.ToTensor())dataloader = DataLoader(dataset, batch_size=64)class Tudui(nn.Module):    def __init__(self):      super(Tudui, self).__init__()      self.maxpool1 = MaxPool2d(kernel_size=3, ceil_mode=False)    def forward(self, input):      output = self.maxpool1(input)      return outputtudui = Tudui()writer = SummaryWriter("../logs_maxpool")step = 0for data in dataloader:    imgs, targets = data    writer.add_images("input", imgs, step)    output = tudui(imgs)    writer.add_images("output", output, step)    step = step + 1writer.close()得到的结果如下,其实池化就是相当于做一个缩略马赛克处理

非线性激活

非线性激活就是例如ReLu、Sigmod等非线性激活函数,在Pytorch中的使用是比较简单的,调用函数即可,例如Sigmod函数:

这里要注意inplace的作用就是是否要有一个新的返回值来存储输出值,默认为False,如果为True的话输出值覆盖输入值
除了上面列举的一些神经网络最基本必须的网络之外,torch.nn中还有很多其他的层:正则化层、线性层、Transformer层等等,有一些在特定的网络中需要特定使用,可以去了解一下

Sequential的作用

sequential的作用就是将我们要创建的神经网络的层数按照顺序堆叠起来,个人觉得用处就是简化代码,后面可以再了解看看,如下图所示,用sequential堆叠起神经网络之后就可以直接创建实例并输入。相较于用x输出承接x输入是简洁很多的。

损失函数和优化器

损失函数和优化器在模型构建中是十分重要的,直接决定到模型的最终效果好坏,不过与前面不同的是,这一部分在代码调用十分简单,重点在于理解 损失函数和优化算法的原理,所以直接看官方文档:损失函数、优化算法
页: [1]
查看完整版本: 深度学习入门笔记——神经网络的构建和使用